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SUbBiARY

Hypervelocity impact tests were conducted to simulate the damage that

meteoroids will produce in the Shuttle Orbiter leading edge structural sub-

system material. The nature and extent of the damage is reported and the

probability of encountering meteoroids with sufficient energy to produce

such damage is discussed.

INTRODUCTION

The Space Shuttle Orbiter is a large spacecraft and will spend a consid=

erable amount of time in space and, therefore, can be expected to be struck

by larger meteoroids than previous manned spacecraft. The damage that

these meteoroids will produce in the complex materials of which the Shuttle

!
Orbiter is constructed can be understood only by conducting hypervelocity

impact tests because theories of hypervelocity impact damage have been applied

successfully only to homogeneous materials. In the NASA design criteria 1
I
I

monograph for meteoroid protection (see ref. I) the only penetration equations j

given are those to calculate penetration damage in a simple homogeneous metal
!

sheet. For any other material or any other configuration, the recommended i

practice is to test the material in the laboratory at the highest impact speed

attainable and to scale the tests to meteoroid impact conditions by assuming

that particles with equal kinetic energy create equal damage.
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The Shuttle Orbiter leading-edge structural subsystem (LESS) material i.s

madQ of reinforced carbon carbon laminate material with a diffused silicon

carbide coating for oxidation protection. This complex composite material

has many interfaces between and within the layers of woven material, and

certainly falls into the category of materials that must be tested to

determine damage characteristics.

The damage that meteoroids will inflict on the LESS material is a

concern to the spacecraft designers because this material will be used on the

nose and leading edge of the Shuttle Orbiter and is intended to provide

thermal protectionduring reentry.

Some very brittle materials, like beryllium, crack during hypervelocity

impact, the crack running from the impact site to the edge of the specimen,

[ (see ref. 2). If the LESS material on the Shuttle Orbiter cracked in that

I manner, large sections of the material might be lost from the spacecraft. Itis suspected that, for some cases, the cracking is caused by stress concen-

trations that are created by the way the material is supported, while in

other cases the cracking is simply a result of the material properties and

would occur even if the material were floating freely.

The purpose of the present test program was to produce hypervelocity

impact damage in specimens similar to that expected from meteoroids so that the

specimens could subsequently be tested in arc heated facilities to evaluate

the degradation in thermal performance. In this report only the nature and

extent of the hypervelocity impact damage is considered. The degradation in

thermal performance as a consequence of the damage is not addressed.
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TEST SPECIMENS

The specimens tested were discs, having a diameter of 72 mm, a thickness

of 5.0 mm± 0.1 mm, a mass of about 34 g, and an overall density of

1.7 g/cm 3.

TEST PROCEDURE

The projectiles were launched using a small light-gas gun. Nylon

i projectiles were launched directly from barrels of the same diameter as the

projectiles, (that is, sabots were not used). Photographs taken of the

nylon projectiles in flight showed no evidence of ablation during the launch. !
"1

Glass projectiles were placed on the front of nylon sabots and launched

. from a 1.52-mm diameter launch tube. In this case ablation is not a concern,

because the sabot prevents the gases from reaching the projectiles. Glass

I projectiles, however, are fragile and sometimes shatter during the launch.
: Photographs taken of the glass projectiles in flight during these tests showed

that they all remained intact. The two photographs taken of the nylon pro-

jectile fired at specimen 3-73 at two different positions along the flight

path are shown in figure l(a). The velocity of the projectile was

determined from the distance moved in the time interval between photographs.

The two photographs of the glass projectiles launched at specimen 3-74

are shown in figure l(b). Three glass projectiles, each 0.27 mm in diameter,

were placed on the sabot for this run. Only one projectile struck the

specimen. The sabot can also be seen in these photographs. The sabot and

the projectiles separate slightly during flight and the sabot is stopped

by a baffle located between the gun and the target.
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The specimens were mounted :ina foam target holder to avoid concen-

trated stresses that .light cause the specimen to crack. This was done to

determine if the LESS material had an inherent tendency to crack during

hypervelocity impact. A photograph of the target holder is shown in

figure 2. The targets were positioned so that the impacts would be

normal to the surface of the specimens. The tests were conducted in a test i
_hamber that was evacuated to a pressure of 13 N/m 2. J:

i TEST RESULTS

I
J

Nine tests were conducted. The results of the tests are shown in table

I. The kinetic energy of the projectiles varied from 0.2 J to 74 J. An

attempt was made to strike specimen 3-71 with a 0.1J projectile, but trash

struck the specimen, damaging it more extensively than the projectile would

have.

Only the front surface was cratered when the impact energy was 3 J, or

less. Photographs of the front surface of the four specimens which were

damaged only on the front surface are shown in figure 3. At 3 J a trace of

the black carbon interior was exposed. At lesser energies only the exterior

layerswere penetrated. The exterior layers have good resistance to penetra-

tion but are brittle and spallation occurs around the impact point; see the

front surface area damaged in table I. Information on how brittle the

material is and how much resistance to penetration it has can be obtained by

comparing the damage with that done to cold rolled steel under the same

impact conditions. The test using specimen 3-74 provides an excellent compari-

son. In that test, three glass projectiles were launched (see figure ?(b)).

]'he projectiles were all the same size and were accelerated to the same

4



velocity. One projectile struck specimen 3-74 while the other two struck the

cold rolled steel baffle. The photographs in figure 4, which are at the same

magnification, show the damage produced in the specimen and the steel. The

area damaged on the LESS material specimen is 6 times the area damaged on the 1

steel. The depth of penetration was about 480 um in the LESS material and

about 240 _m in the steel. That shows good resistance to penetration

especially since the LESS material is only about 1/5 as dense as steel.

The impact at 11J in specimen 3-72 produced an impact crater on the i

front surface and a spallation crater on the back surface, although there was

no hole through the material. Photographs of both sides of specimen 3-72 are ]
!shown in figure 5. Notice the similarity in the damage to both sides.

Spallation is common in hypervelocity impacts into brittle materials, even in

aluminum and steel (see ref. 1), which are not nearly so brittle as the LESS

material.

The specimens were completely penetrated when the impact energy was

34 J or greater. The size of the hole is given in table I. The area damaged

on the front and back surfaces is also given in table I. Notice that the

rear surface was damaged more extensively than the front surface. The shock !

wave originating at the impact site caused delamination near the back surface

when it was reflected from that surface. Much of the delaminated material

was lost as detached spall while some remained attached. Photographs of the

front and back surfaces of the three specimens which were completely penetrated

are presented in figure 5.

A comparison of the penetration resistance of the LESS material with

aluminum and steel can be made using the equations in reference 1. The

energy required to penetrate the LESS material is greater than 11J but less
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than 34 J. At 5.5 km/s, nylon projectile_ in the 1] ,l to 34 J range can pene-

trate 2.0 mm to 3.0 mm of aluminum or 1.3 mm to 2.0 _n of steel. The LI!SS

material does not have the penetration resistance of the metals on a thickness

basis, but on a weight basis, that is, mass per unit area required to stop

projectiles, it is superior to steel, t

One of the specimens developed cracks during the hypervelocity impact
'k

test. The cracks, which are on the back surface and edge of specimen 3-73, --"

did not cause the specimen to fragment or to lose material. The photographs i
1

in figure 7 show two cracks running from the impact site to the edge of the

specimen and other cracks perpendicular to these. No attempt was made to

determine the depth of the cracks or the degree to which they effect the 1

strength of the material. The impact site .on specimen 3-73 was just 15 mm

from the edge of the target. The cracking occurred near the shortest path

from the impact site to the edge. None of the other specimens showed any

evidence of cracking, even though, in two cases, the impact energy was 1_
J

greater than that for specimen 3-73. In these cases, however, the impact
i

sites were 29 mm or more from the edge of the specimen, see table I.
.... i

1

DISCUSSION 1
J
1

The impact energies that can be expected from meteoroids striking the i
i

LESS material on the Shuttle Orbiter are shown _n figure 8. This calculation

is based on the NASA meteoroid environment model (see ref. 3). The area of

the nose and leading edge of the Shuttle Orbiter was taken to be 38 m2. It

was assumed that the nose was pointed in the direction of motion of the space-

craft and, consequently, that the meteoroid flux was four times the average



flux on a randomly oriented surface. That is the maximum flux that a surface

can be expected to receive (see ref. 4).

The probability of the LESS material being penetrated on a single mission

of 30 days duration is only 0.04 (using 34 J as the energy necessary for

penetration). However, over 500 missions of 7 days duration are shown in

i the 1973 Space Shuttle Traffic Model (see ref. 5). The probability that a

i, penetration will occur on at least one orbiter is about 0.98, almost a

certainty. More likely than not, during one of the 500 Shuttle missions, the

LESS material will be struck by a meteoroid with kinetic energy in ¢.;cess of

160 J. Damage like that caused by the 3 J impact must be expected to occur

about once during each 30-day mission. Of course, many impacts with kinetic "I

energy in excess of 0.2 J will occur during each mission.

The probability that cracks will be produced in the LESS material on

the Shuttle Orbiter was not calculated because the dependence of crack

formation on projectile properties and impact conditions is not known.

Apparently the proximity of the impact site to an edge is an important

factor. If this is the case, then the probability of cracks being produced

would also depend on the size of the segments covering the nose and leading

edge.
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(a) projectile launched at speciman ._-73

(b) projectiles launched at specimen 3-74

Figure i.- Photogral_hs of the projectiles t;ikcn in i'light to verify
projectile :integrity and to measure projectile velocity.
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C¢) specimen 3- 74
0.3 J (d) specimen 3-80
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Figure 3.- Photographs of the front surface of specimens struck by
projectiles with kinetic energy of 3 J or less.
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(a) LESS material specimen 3-74
0.3 J

POOR QUAI,IT_

(b) cold rolled steel
0.3 J

Figure 4.- Photographs of damage caused I)y 0.27 mm glass projectiles
at 5.4 km/s.



(a) front surface

N i0 mm _
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(b) back surface

Figure 5.- Photogral_hs of specimen 3-72. Kinetic energy of
projectile was ll ,l.
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(a) back surface I
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(b) edge

Figure 7,- Photographs of specimen 3-73 shmvin/; crack.,; on tile back {
surface and edge,
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Probability, percent,

that a meteoroid with kinetic energy exceeding K will strike the

nose or leading edge of a shuttle orbiter.

Fig.8. The kinetic energy of meteoroids expected to strike the
leading edge and nose of the Shuttle Orbiter.
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